
CollaborateR: 
extract a collaboration graph 
from a version control system log
eRum 2020 – Parallel session 3 - Applications

3:00 PM - 3:15 PM

Wed June 17th, 2020

Leen Jooken

Joint work with Mathijs Creemers, Mieke Jans, Benoît Depaire and Gert Janssenswillen



CollaborateR

• Support knowledge management for

software engineering environments

• Constructs collaboration graph



The Idea



The Idea

KNOWLEDGE MANAGEMENT
in software engineering environments







The Idea

• Knowledge preservation

• General structure of 

collaboration

• Crucial Resources



The Data



The Data



Inspiration



Inspiration

EVENT LOG

DISCOVERY

CONFORMANCE

ENHANCEMENT

PROCESS MODEL

VCS LOG

DISCOVERY

COLLABORATION GRAPH



Inspiration



Inspiration



Inspiration



Inspiration



Inspiration



Inspiration



How To Use



How To Use

The input

VCS LOG EVENT LOG



How To Use

The input

FILE ID ACTIVITY 

TYPE

TIMESTAMP RESOURCE REVISION MODIFIER

STATUS

1 Commit 25/03/2020 

12:03:03

Jack 

Smidth

233 Modified

4 Commit 03/04/2020 

16:37:12

Andy 

Joseph

234 Deleted

… … … … … …



How To Use

The input

https://www.bupar.net

https://www.bupar.net/


How To Use

The output:



The Algorithm



The Algorithm

1

2

3



Step 1: Building the Base Graph

1

2

3

• Include every programmer

• Add edge if file in common



2

3

Purpose

1. Emphasis in the visualization

2. Simplification of the graph

Step 2: Calculating the Weights



Typ hier uw vergelijking.
2

3

Importance of Programmer

T
y
p
h
ier

u
w
vergelijk

in
g.

• Unary Frequency Significance

• Betweenness Centrality

• Eigenvector Centrality

• Degree Centrality

෍

𝑗=1

𝑛

𝑤𝑗൝

Step 2: Calculating the Weights



Typ hier uw vergelijking.

T
y
p
h
ier

u
w
vergelijk

in
g.

Unary Frequency Significance

The more often a programmer

appears in the log, 

the more significant he is.

Step 2: Calculating the Weights



Typ hier uw vergelijking.

T
y
p
h
ier

u
w
vergelijk

in
g.

Betweenness Centrality

Handle programmers

that are a part of 

several different teams.

Step 2: Calculating the Weights



Typ hier uw vergelijking.

T
y
p
h
ier

u
w
vergelijk

in
g.

Eigenvector Centrality

A node is highly important 

if many other

highly important nodes link to it.

Step 2: Calculating the Weights



Typ hier uw vergelijking.

T
y
p
h
ier

u
w
vergelijk

in
g.

Degree Centrality

Number of edges

incident upon the node.

→ Identify isolated nodes

Step 2: Calculating the Weights



2

3

Importance of Collaboration

• Binary Frequency Significance

• Proximity Correlation
෍

𝑗=1

𝑛

𝑤𝑗 ൝

Step 2: Calculating the Weights



Binary Frequency Significance

The more files are 

worked on together, 

the stronger the relationship.

Step 2: Calculating the Weights



Proximity Correlation

Pair programming

as a closer collaboration

Step 2: Calculating the Weights



2

3

Step 2: Calculating the Weights



3

Step 3: Simplifying the Graph

3 Consecutive Phases:

1. Edge Filtering

Edge Filtering

Only the edges

with the highest utility values

are preserved



3

Step 3: Simplifying the Graph

3 Consecutive Phases:

1. Edge Filtering

2. Aggregation

Aggregation

Cluster less important 

but strongly connected

programmers



3

Step 3: Simplifying the Graph

3 Consecutive Phases:

1. Edge Filtering

2. Aggregation

3. Abstraction

Abstraction

Abstract insignificant

programmers that are 

weakly connected

to the graph



Step 3: Simplifying the Graph

3



Results



Results



Results



Results



Results

• Control number of candidates

• Control strictness cluster condition

Clustering



Results

• Control number of candidates

• Control strictness abstraction condition

Abstraction



Results



Results



Results

Clustering

• More candidates

• More strict cluster condition



Results

• Less candidates

• Less strict abstraction condition

Abstraction



Results



Results



Results



Insights



Insights



Insights

Isolated groups

Risky if:

• Few members

• Members have large 

importance



Insights

Core developers



Insights

Core developers

Risky because:

Important contribution

+

Weak collaboration



Insights

Striking relations

Strong disjunct 

programming relation:

The only ones working

on a specific aspect of 

the code



Insights

Striking relations

Pair programming

relation:

Teacher 

+ 

Apprentice



Thank you
leen.jooken@uhasselt.be

https://github.com/bupaverse/collaborateR


