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CollaborateR

• Support knowledge management for

software engineering environments

• Constructs collaboration graph



The Idea



The Idea

KNOWLEDGE MANAGEMENT
in software engineering environments







The Idea

• Knowledge preservation

• General structure of 

collaboration

• Crucial Resources



The Data
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EVENT LOG

DISCOVERY

CONFORMANCE

ENHANCEMENT

PROCESS MODEL

VCS LOG

DISCOVERY

COLLABORATION GRAPH
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How To Use



How To Use

The input

VCS LOG EVENT LOG



How To Use

The input

FILE ID ACTIVITY 

TYPE

TIMESTAMP RESOURCE REVISION MODIFIER

STATUS

1 Commit 25/03/2020 

12:03:03

Jack 

Smidth

233 Modified

4 Commit 03/04/2020 

16:37:12

Andy 

Joseph

234 Deleted

… … … … … …



How To Use

The input

https://www.bupar.net

https://www.bupar.net/


How To Use

The output:



The Algorithm



The Algorithm

1

2

3



Step 1: Building the Base Graph
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• Include every programmer

• Add edge if file in common
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Purpose

1. Emphasis in the visualization

2. Simplification of the graph

Step 2: Calculating the Weights



Typ hier uw vergelijking.
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Importance of Programmer
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• Unary Frequency Significance

• Betweenness Centrality

• Eigenvector Centrality

• Degree Centrality
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Step 2: Calculating the Weights



Typ hier uw vergelijking.

T
y
p
h
ier

u
w
vergelijk

in
g.

Unary Frequency Significance

The more often a programmer

appears in the log, 

the more significant he is.

Step 2: Calculating the Weights



Typ hier uw vergelijking.
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Betweenness Centrality

Handle programmers

that are a part of 

several different teams.

Step 2: Calculating the Weights



Typ hier uw vergelijking.
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Eigenvector Centrality

A node is highly important 

if many other

highly important nodes link to it.

Step 2: Calculating the Weights



Typ hier uw vergelijking.
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Degree Centrality

Number of edges

incident upon the node.

→ Identify isolated nodes

Step 2: Calculating the Weights
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Importance of Collaboration

• Binary Frequency Significance

• Proximity Correlation
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Step 2: Calculating the Weights



Binary Frequency Significance

The more files are 

worked on together, 

the stronger the relationship.

Step 2: Calculating the Weights



Proximity Correlation

Pair programming

as a closer collaboration

Step 2: Calculating the Weights
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Step 2: Calculating the Weights
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Step 3: Simplifying the Graph

3 Consecutive Phases:

1. Edge Filtering

Edge Filtering

Only the edges

with the highest utility values

are preserved
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Step 3: Simplifying the Graph

3 Consecutive Phases:

1. Edge Filtering

2. Aggregation

Aggregation

Cluster less important 

but strongly connected

programmers
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Step 3: Simplifying the Graph

3 Consecutive Phases:

1. Edge Filtering

2. Aggregation

3. Abstraction

Abstraction

Abstract insignificant

programmers that are 

weakly connected

to the graph



Step 3: Simplifying the Graph
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Results
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Results

• Control number of candidates

• Control strictness cluster condition

Clustering



Results

• Control number of candidates

• Control strictness abstraction condition

Abstraction
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Results

Clustering

• More candidates

• More strict cluster condition



Results

• Less candidates

• Less strict abstraction condition

Abstraction
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Insights

Isolated groups

Risky if:

• Few members

• Members have large 

importance



Insights

Core developers



Insights

Core developers

Risky because:

Important contribution

+

Weak collaboration



Insights

Striking relations

Strong disjunct 

programming relation:

The only ones working

on a specific aspect of 

the code



Insights

Striking relations

Pair programming

relation:

Teacher 

+ 

Apprentice



Thank you
leen.jooken@uhasselt.be

https://github.com/bupaverse/collaborateR


