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We aim to understand the molecular mechanisms underlying 
the functioning of an organism.

The term omics describes a comprehensive quantitative characterisation
of a class of molecules in a given sample
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Ritchie et al, Nat Rev Gen 2015
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Heterogeneity in disease onset, progression and treatment outcome across 
patients makes it difficult to decide on the optimal treatment for a patient.

Aim: Gain better understanding of heterogeneity and 
eventually personalized treatment decisions on a molecular basis.
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• Heterogeneous data from different techniques come with distinct 
statistical properties and inherent structure 

• complex correlation structures and hidden confounders 
• appropriate regularization strategies 
• algorithms need to be scalable to large data sets 
• large amounts (and different patterns) of missing values 
• interpretable approaches for an unsupervised exploration

structured
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• MOFA performs structured matrix factorisation to infer a joint low-dimensional 
representation of multi-modal data  

• different noise models an be used for each data modality 

• sparsity priors enable automatic relevance determination of factors and feature weights 

• Inference is performed using (stochastic) variational Bayes 

• interfaces with Bioconductor classes such as MultiAssayExperiment or Seurat

MOFA: Argelaguet & Velten et al Mol Sys Bio. 2018 
MOFA+:  Argelaguet & Arnol et al Genom Biology. 2020
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MOFA quantifies how much variance each factor explains 
in each group and/or view.

Downstream analysis: Variance decomposition
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The factor space can be used to visualise or cluster samples or used as 
input for predictive models.
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Weights of a factor in each view can give insight into its molecular signature.
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Enrichment analysis of the weights can be used to test for feature sets, e.g. 
gene sets, linked to a factor.



Author Application 1: Finding sources of heterogeneity in blood cancer
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200 leukaemia samples (incompletely) characterized by genomic sequencing, 
RNAseq, methylation arrays and ex-vivo drug response assays



Author Factor 1 recovers and refines an important clinical marker
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Weights link the factor to features from all molecular layers.



Author MOFA factors are predictive of clinical outcomes for patients
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MOFA factors are associated with time to treatment and provide improved 
prediction compared to models relying on a single omic or concatenated data.
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Application 2: Capturing lineage formation from time-course 
single cell RNA-seq

16,152 single cells from mouse embryos at three different developmental stages 
(E6.5, E7.0, and E7.25)

Argelaguet*, Mohammed*, Clark* et al. Nature 2019 
Pijuan-Sala et al. Nature. 2019

Which molecular processes underly the developmental decisions of a cell? 
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MOFA+ recovers latent factors with differential activity across 
developmental time
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MOFA+ recovers latent factors with differential activity across 
developmental time
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Factor 4 captures the emergence of the mesoderm lineage at E7.0
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Related work and ongoing research

Encode other data structures   
- temporal or spatial data 
- networks

Non-linear extensions of MOFA

Supervised integration of multi-modal data: Bioconductor package graper

d gb

Velten & Huber, Biostatistics 2019

Response of interest,  
e.g. clinical outcome
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Summary

• MOFA is an unsupervised factor analysis model to disentangle the sources 
of variation in a multi-view and/or multi-group data set 

• Can cope with different data modalities: continuous, binary and counts 

• Ignores missing values, no need of imputation 

• Fast 

• Sparse and interpretable results 

• Well-established workflow for the downstream analysis

• MOFA is available from Bioconductor 
• MOFA2 is available from github.com/bioFAM/MOFA2 
• Shiny App: http://www.ebi.ac.uk/shiny/mofa/ 

• MOFA is a Bayesian factor analysis model to disentangle the sources of variation in 
multi-view and/or multi-group data 

• MOFA copes with missing values, is scalable to 100,000’s of samples and yields 
interpretable results by use of sparsity priors 

• MOFA interfaces with R/Bioconductor classes, e.g. MultiAssayExperiment or Seurat 

• For model training MOFA uses reticulate to interface with python 

• Various functions for downstream analysis and a Shiny App to explore trained models 
in an interactive manner are provided 

Software

http://github.com/bioFAM/MOFA2
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